首页> 外文OA文献 >Differential geometric least angle regression: a differential geometric approach to sparse generalized linear models
【2h】

Differential geometric least angle regression: a differential geometric approach to sparse generalized linear models

机译:微分几何最小角度回归:稀疏广义线性模型的微分几何方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Sparsity is an essential feature of many contemporary data problems. Remote sensing, various forms of automated screening and other high throughput measurement devices collect a large amount of information, typically about few independent statistical subjects or units. In certain cases it is reasonable to assume that the underlying process generating the data is itself sparse, in the sense that only a few of the measured variables are involved in the process. We propose an explicit method of monotonically decreasing sparsity for outcomes that can be modelled by an exponential family. In our approach we generalize the equiangular condition in a generalized linear model. Although the geometry involves the Fisher information in a way that is not obvious in the simple regression setting, the equiangular condition turns out to be equivalent with an intuitive condition imposed on the Rao score test statistics. In certain special cases the method can be tweaked to obtain L1-penalized generalized linear model solution paths, but the method itself defines sparsity more directly. Although the computation of the solution paths is not trivial, the method compares favourably with other path following algorithms.
机译:稀疏性是许多现代数据问题的基本特征。遥感,各种形式的自动筛选和其他高通量测量设备收集了大量的信息,通常只有很少的独立统计主题或单位。在某些情况下,可以合理地假设生成数据的基础过程本身是稀疏的,从这个意义上说,过程中仅涉及少数几个测量变量。我们提出了一种显着的方法,可以单调降低稀疏性,从而可以用指数族建模。在我们的方法中,我们在广义线性模型中对等角条件进行了广义化。尽管几何体以简单回归设置中不明显的方式包含Fisher信息,但等角条件证明与Rao得分检验统计数据上施加的直观条件等效。在某些特殊情况下,可以对该方法进行调整以获得L1惩罚的广义线性模型解路径,但是该方法本身可以更直接地定义稀疏性。尽管求解路径的计算并非无关紧要,但该方法与其他路径遵循算法相比却具有优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号